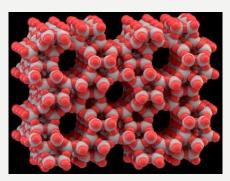


Industry, Economy & Buildings

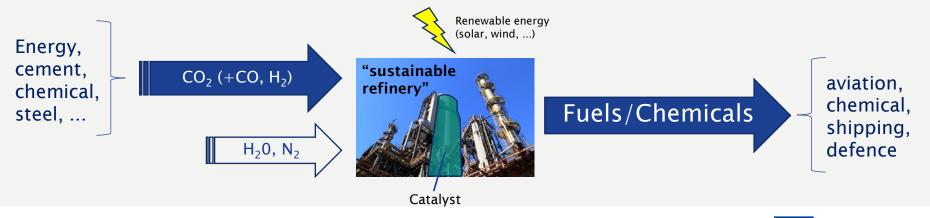
Matthew Whellens
National Contact Point NMBP and Space

Topics covered in this session


- Green Deal call area 3: industry for a clean and circular economy
 - Topic 1: Closing the industrial carbon cycle to combat climate change
 Industrial feasibility of catalytic routes for sustainable alternatives to fossil resources
 - Topic 2: Demonstration of systemic solutions for the territorial deployment of the circular economy
- Green Deal call area 4: energy and resource efficient buildings
 - Topic 1: Building and renovating in an energy and resource efficient way

Topic 3.1 Closing the industrial carbon cycle to combat climate change

 Industrial feasibility of catalytic routes for sustainable alternatives to fossil resources



Specific challenge

- Convert CO₂ from industry/energy into fuels/chemicals, using:
 - renewable energy driven processes
 - energy-efficient catalytic systems
- Perform technical/economic validation at industrial scale

Expected Impact

- Pilot plant by 2026, min. output 4000 tons/annum
 - Techno/economic / life-cycle assessment
 - Potential to
 - $\Downarrow \Downarrow \Downarrow$ industrial CO₂ emissions (~200Mt p.a. reduction by 2050)
 - ↓↓↓↓↓ carbon intensity (below 20g CO₂eq/MJ)
- Synthetic fuels/chemicals as renewable energy storage
- Improved air quality and citizen health through filtering of flue gas emissions from large industrial plants
- Foster a cross-sectorial European innovation eco-system

Scope

- Development/deployment of highly innovative <u>catalytic material</u> <u>systems</u>, aiming at 50% increase in the overall efficiency compared to the State-of-the-Art
- Develop innovative, renewable energy driven, <u>catalytic processes</u>, to produce synthetic fuels and chemicals, at a sufficiently large scale to demonstrate its cost effectiveness
- Demonstrate full value chain for production of synthetic fuels and chemicals
- Address financial, regulatory, environmental, land/raw material constraints, public acceptance issues

Further Details

- Type of action: Innovation action (IA)
- Overall budget: 80 M€
- Min. 2 projects funded
- TRL 4-5 → TRL 7
- Duration: up to 5 years
- Cross-cutting priorities
- → International cooperation

TECHNOLOGY READINESS LEVELS - TRL

- 1 Basic principles observed
- 2 Technology concept formulated
- 3 Experimental proof of concept
- 4 Technology validated in lab
- 5 Technology validated in relevant environment
- 6 Technology demonstrated in relevant environment
- 7 System prototype demonstration in operational environment
- 8 System complete and qualified
- 9 Actual system proven in operational environment

Project Example

- Carbon Recycling International
- "World leader in power-to-methanol (CH₃OH) technology"
- Renewable methanol from carbon dioxide, hydrogen and electricity for
 - fuel applications
 - greener chemicals
 - products

George Olah Renewable Methanol Plant

- · Located in Svartsengi, Iceland
- World's first industrial scale production of fuel from CO₂
- H₂ from electrolysis + CO₂ from geothermal plant + catalysis
- World's first power-to-liquids output to receive a recognized certification for carbon intensity
- World's first power-to-liquids facility to implement largescale electrolysis
- · 4000 tonnes/annum production

Useful Contacts

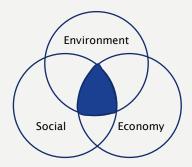
- SUNERGY Initiative
 - Originated from 2 H2020 CSA actions: ENERGY-X & SUNRISE
 - "Fossil-free fuels and chemicals for a circular economy"
 - Lobbying for a public private partnership in Horizon Europe
 - EMPA, UZH are members of the community
 - Get in touch!

- E-refinery @ TU Delft
 - Research programme to accelerate the transition towards sustainable production of chemicals and fuels
 - Get in touch!

Supporting documentation

- Low carbon energy and feedstock for the European chemical industry (2017, DECHEMA)
 - Good technical document, going in detail of different options
- Masterplan for a Competitive Transformation of EU Energy-intensive Industries Enabling a Climate-neutral, Circular Economy by 2050 (2019, High-Level Group on Energy-Intensive Industries)
 - High-level, strategic document. Addressing the wider scope of "energy-intensive industry"
- SUNERGY VISION How Fossil-free Fuels and Chemicals Can Contribute to the European Green Deal Bert Weckhuysen - University of Utrecht, SUNERGY Coordinator, 6 February 2020
- Industrial Value Chain A Bridge Towards a Carbon Neutral Europe. Europe's Energy Intensive Industries contribution to the EU Strategy for long-term EU greenhouse gas emissions reductions (2018, IES)
- International Energy Agency (IEA) website: www.iea.org
- Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter "Industry"
- Draft proposal for a European Partnership under Horizon Europe "Processes4Planet", Version 17 June 2020
- Fossil-free fuels and chemicals for a climate neutral Europe, SUNERGY kick-off event-Brussels, 5 February 2020
- Nørskov JK, Latimer A & Dickens CF (ed). Research needs towards sustainable production of fuels and chemicals.
 2019
- SUNRISE Solar Energy for a Circular Economy Technological Roadmap, November 2019

Topics covered in this session


- Green Deal call area 3: industry for a clean and circular economy
 - Topic 1: Closing the industrial carbon cycle to combat climate change
 Industrial feasibility of catalytic routes for sustainable alternatives to fossil resources
 - Topic 2: Demonstration of systemic solutions for the territorial deployment of the circular economy
- Green Deal call area 4: energy and resource efficient buildings
 - Topic 1: Building and renovating in an energy and resource efficient way

Topic 3.2 Demonstration of systemic solutions for the territorial deployment of the circular economy

Circular Economy @ EU - Background

- First Circular Economy Action Plan (2015→2019)
- All 54 actions now implemented

- New Circular Economy Action Plan, adopted March 2020
- Building upon previous Package
- One of the main building block of the Green Deal
- Annual Sustainable Growth Strategy 2020
- Sustainable Europe Investment Plan
- European Climate Law
- Bioeconomy Strategy
- European Industrial Strategy

Projects - The Past and the Future

- Large number of Circular Economy projects already been carried out (610 only in Cordis)
 - Integrated covering all aspects of CE in a specific territory and target sector/activity
 - Focused demonstration projects for new technology/service/process in specific sector/territory/value chain
 - Supporting models, approaches, cataloging, ...
- What's new in Green Deal Call?
 - Start from what has already been done!
 - Extend to larger geographical and sectorial scale
 - Integrate all sectors of economy
 - Address social dimension and citizen participation
 - Potential to scale up the implemented solutions and guidelines scaling-up/replication

The Green Deal Call - In a Nutshell

Implement and demonstrate concrete systemic solutions for the territorial deployment of the circular economy in at least three territorial clusters:

- Northern-west Europe
- Central and eastern Europe
- Mediterranean Europe

(at least one systemic solution per cluster)

The replicability and scalability potential is essential!

Cluster: socio-economic environmental system composed of relevant and complementary territorial actors (geographically cohesive). Can be local, regional, even cross-border

Systemic: across all relevant sectors and must include all the relevant actors (administrations, industry & SMEs, scientific community, financial intermediaries, non-governmental organizations and civil society)

Which focus?

... and many more!

- Choice of approach/sector/technology must be justified by proper analysis (SWOT, Smart Specialisation Strategies)
- Proposals must be complementary (and not overlapping) with past work and projects!

... Further to deployment

Measure, Analyse, Assess

- Circular vs. linear
- LCA
- ±factors affecting success

How to scale-up and replicate, by using:

- Metrics
- Norms / Standards / Certifications / Regulations
- Investments, synergies with other EU funds (Cohesion Policy funds, Just Transition Fund, InvestEU, PDA (EASME))
- Cooperation with the EC's "Circular Cities and Regions Initiative", exchange of best practices between clusters

Further Details

- Type of action: Innovation action (IA)
- Overall budget: 60 M€
- 3-5 projects funded
- TRL $xxx \rightarrow$ TRL 6-7

TECHNOLOGY READINESS LEVELS - TRL

- 1 Basic principles observed
- 2 Technology concept formulated
- 3 Experimental proof of concept
- 4 Technology validated in lab
- 5 Technology validated in relevant environment
- 6 Technology demonstrated in relevant environment
- 7 System prototype demonstration in operational environment
- 8 System complete and qualified
- 9 Actual system proven in operational environment

Topics covered in this session

- Green Deal call area 3: industry for a clean and circular economy
 - Topic 1: Closing the industrial carbon cycle to combat climate change
 Industrial feasibility of catalytic routes for sustainable alternatives to fossil resources
 - Topic 2: Demonstration of systemic solutions for the territorial deployment of the circular economy
- Green Deal call area 4: energy and resource efficient buildings
 - Topic 1: Building and renovating in an energy and resource efficient way

Topic 4.1 Building and renovating in an energy and resource efficient way

Background

- Built environment → of strategic R&I importance for reaching climate neutrality in 2050
 - Step 1
 - Design/build with \mathbb{Q} "embodied" CO_2 emissions and \mathbb{Q} efficiencies
 - Renovate to ☆ efficiencies
 - Step 2
 - Energy positive buildings with renewable energy technologies
 - https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildingsdirective_en
 - https://ec.europa.eu/energy/topics/renewable-energy/renewable-energy-directive/overview_en

Scope

Proposals are expected to deliver:

- at least two energy-positive neighbourhoods real-life demonstrations ("living labs")
- in different regions of Europe
- large-scale (residential/non-residential, new and/or retrofitted)
 - → (several buildings, but smaller than a city district)
- implementing both technology and social innovations

Scope - In detail

- Design for scalability
- Construction/renovation workflows
- Sustainable and energy-efficient building designs
- Electricity generation
- Energy storage systems
- Reduced operation costs with digital tech (incl. "Smart home")
- Citizen awareness-raising activities
- Coordination on standards and regulatory aspects

Scope - Scalability / Replicability

End target is scaling up / replication, for this the project should:

- Carry out a whole value-chain assessment of the "living labs"
- Adapt the value chain to new operation patterns
- Set up (or use existing) innovation clusters in different regions of Europe, in order to:
 - Facilitate the deployment of the "living labs"
 - Foster partnerships with other R&I initiatives
 - Analyse, assess and value chains in other environments/markets with different types of building types
 - \rightarrow pave the way to scaling-up / replication ...

Impact

- Energy savings
- Investments in sustainable energy
- Reduction of greenhouse gas emissions
- Reduction of the embodied energy in buildings
- Reduction of air pollutants

Demonstration of high potential for replicability

Further Details

- Type of action: Innovation action (IA)
- TRL 5-6 → TRL 7-8
- Overall budget: 60 M€
- 10-20 M€/project

TECHNOLOGY READINESS LEVELS - TRL

- 1 Basic principles observed
- 2 Technology concept formulated
- 3 Experimental proof of concept
- 4 Technology validated in lab
- 5 Technology validated in relevant environment
- 6 Technology demonstrated in relevant environment
- 7 System prototype demonstration in operational environment
- 8 System complete and qualified
- 9 Actual system proven in operational environment

Past Project Examples

- PVSITES: Building-integrated photovoltaic technologies and systems for large-scale market deployment
- Train-to-NZEB: The Building Knowledge Hubs
- OptEEmAL: OptimisedEnergy Efficient Design Platform for Refurbishment at District Level
- FASUDIR Friendly and Affordable Sustainable Urban Districts Retrofitting
- CLIMAWINDA Demonstrating the effectiveness and commercial potential of CLIMAWIN intelligent windows for energy efficiency in retrofit of buildings in Europe

