

Gender disaggregated S\&T statistics and indicators

WORKSHOP ON
SCIENCE, TECHNOLOGY AND INNOVATION INDICATORS: TRENDS AND CHALLENGES IN SOUTH EASTERN EUROPE

27-31 March 2007, Skopje.

Outline of the presentation

- Objectives and Introduction
- Measuring STG
- Availability of STG statistics: Sex-disaggregated data in different sources
- Overview of Women in Education
- Women in science, a statistical overview: Data disaggregation, Cross-country comparability, Analyze existing data, Improve country awareness regarding STG data collection, Identify information gaps
- Other indicators on STG: Description and conceptualization of key variables and problem areas, Assess the current indicators in terms of scope and quality

Objectives

- to discuss the importance of statistics for evidence based policy and decision making
- to discuss necessity of sound statistical system/capacity building activities
- to conduct a substantial analysis on the general issues of STG information, statistics and indicators.

The Gender Gap, an Issue at All Levels

- EFA Global Monitoring Report 2003/4: Gender and Education for All THE LEAP TO EQUALITY
- WOMEN IN SCIENCE AND TECHNOLOGY: A policy issue raising more and more attention worldwide:
- European Union (How to meet "Barcelona target"?)
- NSF ("Realizing America’s Potential")
- UNESCO:
- 1999 World Conference on Science, "A new development?".
- International Report on Science, Technology and Gender 2005 (IRSTG).
- Therefore, there is an increasing demand for cross-nationally comparable indicators on "Women and Science".

Women and S\&T at the UIS

- Mainstreaming gender issues is one of the top priorities identified in the recent International Consultation on S\&T Priorities and Information Needs carried out by the UIS.
- The UNESCO Institute for Statistics (UIS) Immediate, Medium and Longer-Term Strategy in Science and Technology Statistics document states in its "Immediate term data and indicator priorities":

"Special attention will be paid to gender mainstreaming in S\&T, including the production and analysis of indicators and disaggregated data by gender."

Sex-disaggregated Statistics for Evidence Based Policy

- Concepts, definitions, criteria for classification and survey methods have extensively been examined and often revised to improve the measurement of all aspects of women's and men's lives
- Gender Statistics reflect social progress from the perspective of gender equality
- Examine gender concerns and goals in society

> However, lack of significant official data with sex breakdowns constrain the ability to design and implement policies directed to these areas

- Lack-of-policy-priority -> lack-of-statistics->lack-of-awareness
- Data collected are critically dependent upon the statistical capacities of relevant government departments and agencies within countries
- Weak statistical capacities and inadequate information
- Improve capacities for data collection, processing, quality control, analysis and dissemination
- Awareness-raising activities in order to help bring STG issues into the main policy agendas
- Capacity building activities in this field need to be coupled with general S\&T statistics capacity building projects

International organizations have a central role to play, encouraging countries to mainstream the gender dimension into data collection instruments and procedures

Measuring STG: Progress

- UNESCO has recommended collection of data on R\&D personnel by gender from the beginning:
- Recommendation concerning International Standardization of Statistics on Science and Technology (UNESCO 1978)
- UNESCO Manual for Statistics on Scientific and Technological Activities (1984)
- EU created (2001) a sub-group to the Helsinki Group of Women and Science.
- Eurostat has introduced sex-breakdown into R\&D surveys: in 2002 for member states and 2001 for candidate countries.
- OECD started collecting data with gender breakdown (2002).
- 'Legal Basis on Science and Technology and Innovation Statistics': collection of sex-disaggregated data on S\&T by EU was confirmed with the decision of the European Parliament in 2003.
- OECD Frascati Manual is only now (2003 Edition) recommending the breakdown by sex of national HR data.
- UIS is collecting more data with gender breakdowns: one of the immediate term data and indicators priorities which is stated in the UIS Immediate, Medium and Longer-Term Strategy in Science and Technology Statistics document (2003)
- Harmonizing R\&D data collection into a common survey by OECD/Eurostat.

Availability of Sex-disaggregated Data on Researchers

- UIS:
- R\&D Personnel (Total R\&D Personnel, Researchers and Technicians).
- OECD:
- Researchers (HC), R\&D Personnel by occupation and sector (HC) and Total R\&D personnel by qualification and sector (HC).
- Eurostat \& European Commission:
- R\&D Personnel by occupation and sector (HC and FTE); Total R\&D

Personnel and Researchers by field of science and sector (HC and FTE); Total R\&D Personnel and Researchers by qualification and sector (HC and FTE); Researchers by age and sector (HC); Researchers by citizenship and sector (HC); Business enterprise sector R\&D Personnel by occupation and economic activity (HC and FTE), Researchers by size class (according to number of employees) in Business enterprise sector, Members of scientific boards and Applicants \& beneficiaries of research fund.
In addition to R\&D data, Eurostat and OECD also have data on employment in science and engineering, 'Human Resources in Science and Technology HRST' with gender breakdowns.

The availability of gender-disaggregated data for certain variables such as Researchers by Sector, Qualification and Field of Science is on the rise

Note - A : Already available-by 2004, B : Available from 2005 on, and C : Possibly available before 2008
Source : UIS Questionnaire on w omen in science statistics

GER (\%)

Primary education: gross enrolment ratio by gender

(not including countries with GPI between 0.97 and 1.03, i.e. very close to parity, in increasing order of total GER)

Gross enrolment ratio is the total enrolment in a specific level of education, regardless of age, expressed as a percentage of the eligible official school-age population corresponding to the same level of education in a given school-year.

> Education for All (EFA)
> The international community is committed to eliminating gender disparities in primary and secondary schooling by 2005, and to achieving gender equality by 2015.

Gender parity indices for gross enrolment in primary and secondary education (2000)

How many children live in countries where gender parity has not been reached?

Primary education \square Lower secondary education \square Upper secondary education

TIMSS: Gender Differences in Science Achievement - Eighth Grade

TIMSS: Gender Differences in Science Literacy - Final Year of Secondary School

v

Percentage of female

Percentage of Female

Enrolment in ISCED 5A (1st Degree)

Percentage of Female

ISCED 5A (1st Degree) Graduates

Percentage of Female

ISCED 5A (2nd Degree) Graduates

Percentage of Female

 ISCED 6 Graduates

Percentage of Female Researchers

Female participation in enrolment and graduates in S\&E fields, and researchers, by level, 2004

Percentage of Female Enrolment in ISCED 5A (1st Degree): Science \& Engineering
Fields

Percentage of Female ISCED 5A (1st Degree)
 Graduates: Science \& Engineering Fields

Percentage of Female ISCED 5A (2nd Degree) Graduates: Science \& Engineering Fields

Percentage of Female ISCED 6 Graduates:

 Science \& Engineering Fields

Percentage of Female Researchers (all fields)

Female participation in enrolment, graduates and researchers, by level, 2004: SEE Countries

Country	Year	\% of women in total enrolment by ISCED levels		\% of women in total number of graduates by ISCED levels						\% of women researc hers
		5A $1^{\text {st }}$ degree (Total)	5A $1^{\text {st }}$ degree (S\&E)	5A $1^{\text {st }}$ degree (Total)	5A $1^{\text {st }}$ degree (S\&E)	5A $2^{\text {nd }}$ degree (Total)	5A $2^{\text {nd }}$ degree (S\&E)	$\begin{gathered} 6 \\ \text { (Total) } \end{gathered}$	$\begin{gathered} 6 \\ \text { (S\&E) } \end{gathered}$	
Albania	2003	72\%	44\%
Bulgaria	2004	52\%	...	57\%	41\%	59\%	45\%	51\%	48\%	46\%
Croatia	2002	55\%	35\%	59\%	40\%	50\%*	42\%	48\%*	44\%*	41\% ${ }^{++}$
Romania	2004	55\%	...	57\%	40\%	56\%	41\%	49\%	32\%	43\%
 Montenegro	2001	56\%	36\%	59\%	42\%	50\%	42\%	37\% ${ }^{+}$	26\% ${ }^{+}$	44\% ${ }^{++}$
Macedonia (FYR)	2004	58\%	41\%	65\%	47\%	40\%	42\%	48\%	38\%	50\%
Turkey	2004	43\%	...	46\%	34\%	47\%	40\%	38\%	36\%	36\%

Female participation in enrolment, graduates and researchers, by level, 2004, SEE countries

Percentage of female

Percentage of Female

Enrolment in ISCED 5A (1st Degree), SEE countries

Percentage of Female
ISCED 5A (1st Degree) Graduates, SEE countries

Percentage of Female

ISCED 5A (2nd Degree) Graduates, SEE countries

0\% - 30\%
30.1\% - 45\%
45.1\% - 55\%
55.1\%-70\%
70.1\%-100\%

Data not available

Percentage of Female ISCED 6 Graduates, SEE countries

Percentage of Female Researchers, SEE countries

Female participation in enrolment and graduates in S\&E fields, and researchers, by level, 2004, SEE countries

Percentage of female

Percentage of Female Enrolment in ISCED 5A (1st Degree): Science \& Engineering Fields, SEE countries

0\% - 30\%
30.1\%-45\%
45.1\% - 55\%
55.1\%-70\%
70.1\%-100\%

Data not available

Percentage of Female ISCED 5A (1st Degree) Graduates: Science \& Engineering Fields, SEE countries

Percentage of Female ISCED 5A (2nd Degree) Graduates: Science \& Engineering Fields, SEE countries

Percentage of Female ISCED 6 Graduates: Science \& Engineering Fields, SEE countries

Percentage of Female Researchers (all fields), SEE countries

* * ISCED 5A (1): total enrolment * * ISCED 5A (1): total graduates \leadsto ISCED 5A (2): total graduates \approx ISCED 6: total graduates
_Researchers

In more than half of the World's countries, women represent more than 55\% of the total university graduates (first degree).

> In more than 85% of the World's countries, women represent less than 45% of the university graduates in S\&E fields.

In more than 40% of the World's countries, women represent less than 30\% of Researchers.

> In more than 80\% of the World's countries, women represent less than 45\% of Researchers.

Representation of Women in Sectors of Employment and Fields of Science

The number and proportion of women researchers varies widely between countries, but also between sectors and fields

Researchers in EU-25 by main scientific fields and sex (HES, FTE)

"Scissors Diagrams"

Gender gap at the highest stages of the academic career is beginning to close, but at a very slow pace in EU countries

"Scissors Diagrams"

Female researchers outnumbering males like in Argentina, does not imply lack of vertical segregation

Argentina (Distribution by categories in the Carrera del Investigador CONICET -

Researcher career-, 1998)					
$\begin{array}{r} 100 \% \\ 80 \% \end{array}$					-
60\%					
$60 \%$$40 \%$					
20\%					
0\%					
0\%	Level 1: Asist.	Level 2: Adj.	Level 3: Ind.	Level 4: Ppal.	Level 5: Sup.
-Women	54\%	47\%	34\%	24\%	10\%
--Men	47\%	53\%	66\%	76\%	90\%

The relationship between gender and business enterprise research seems to be very straightforward in developed countries

Other Indicators on Gender, Science and Technology

- Density of researchers in the female labour force
- Funding success rates by gender
- Proportion of women in scientific boards
- 'Honeypot Indicators’ - measures the triangular relationship between R\&D expenditure and the concentrations of researchers in particular sectors or scientific fields of R\&D and the sex composition of researchers in sectors or fields
- Output indicators, such as patents, bibliometrics, citations etc, with sex-breakdowns ???
- "Field Relative Parity Indexes" (FRPI) - reflects the relationship between a specific field's degree of female participation and the average degree of female participation - Over average (FRPI>1) or under average (FRPI<1)
- Engineering Relative Parity Index (ERPI)
- Computing Relative Parity Index (CRPI)
- Life Sciences Relative Parity Index (LSRPI)
- STG statistics have been progressively mainstreamed
- New indicators are available

However:

- information available is still insufficient
- provides only a partial picture

A better measurement of STG requires an important effort from the various stakeholders in order to produce quality statistics that respond to the demands of policy makers and at the same time allow better cross-national comparability.

Thank you!

http://www.uis.unesco.org

UNESCO Institute for Statistics C.P. 6128 Succursale Centre-ville, Montreal, Quebec, H3C 3J7, Canada.

TP: (1 514) 343-6880
Fax: (1 514) 343-6872

